Cena s DPH / bez DPH
Hlavní stránka>BS EN ISO 75-1:2020 Plastics. Determination of temperature of deflection under load General test method
Sponsored link
sklademVydáno: 2020-03-18
BS EN ISO 75-1:2020 Plastics. Determination of temperature of deflection under load General test method

BS EN ISO 75-1:2020

Plastics. Determination of temperature of deflection under load General test method

Formát
Dostupnost
Cena a měna
Anglicky Zabezpečené PDF
K okamžitému stažení
4650 Kč
Čtěte normu po dobu 1 hodiny. Více informací v kategorii E-READING
Čtení normy
na 1 hodinu
465.00 Kč
Čtěte normu po dobu 24 hodin. Více informací v kategorii E-READING
Čtení normy
na 24 hodin
1395.00 Kč
Anglicky Tisk
Skladem
4650 Kč
Označení normy:BS EN ISO 75-1:2020
Počet stran:18
Vydáno:2020-03-18
ISBN:978 0 539 03549 0
Status:Standard
Popis

BS EN ISO 75-1:2020


This standard BS EN ISO 75-1:2020 Plastics. Determination of temperature of deflection under load is classified in these ICS categories:
  • 83.080.01 Plastics in general

1.1

This document gives a general test method for the determination of the temperature of deflection under load (flexural stress under three-point loading) of plastics. Different types of test specimen and different constant loads are defined to suit different types of material.

1.2

ISO 75‑2 gives specific requirements for plastics (including filled plastics and fibre-reinforced plastics in which the fibre length, prior to processing, is up to 7,5 mm) and ebonite, while ISO 75‑3 gives specific requirements for high-strength thermosetting laminates and long-fibre-reinforced plastics in which the fibre length, prior to processing, is greater than 7,5 mm.

1.3

The methods specified are suitable for assessing the relative behaviour of different types of material at elevated temperature under load at a specified rate of temperature increase. The results obtained do not necessarily represent maximum applicable temperatures because, in practice, essential factors, such as time, loading conditions and nominal surface stress, can differ from the test conditions. True comparability of data can only be achieved for materials having the same room-temperature flexural modulus.

1.4

The methods specify preferred dimensions for the test specimens.

1.5

Data obtained using the test methods described are not intended to be used to predict actual end-use performance. The data are not intended for design analysis or prediction of the endurance of materials at elevated temperatures.

1.6

This method is commonly known as the heat deflection temperature or heat distortion temperature (HDT) test, although there is no official document using this designation.

1.1

This document gives a general test method for the determination of the temperature of deflection under load (flexural stress under three-point loading) of plastics. Different types of test specimen and different constant loads are defined to suit different types of material.

1.2

ISO 75‑2 gives specific requirements for plastics (including filled plastics and fibre-reinforced plastics in which the fibre length, prior to processing, is up to 7,5 mm) and ebonite, while ISO 75‑3 gives specific requirements for high-strength thermosetting laminates and long-fibre-reinforced plastics in which the fibre length, prior to processing, is greater than 7,5 mm.

1.3

The methods specified are suitable for assessing the relative behaviour of different types of material at elevated temperature under load at a specified rate of temperature increase. The results obtained do not necessarily represent maximum applicable temperatures because, in practice, essential factors, such as time, loading conditions and nominal surface stress, can differ from the test conditions. True comparability of data can only be achieved for materials having the same room-temperature flexural modulus.

1.4

The methods specify preferred dimensions for the test specimens.

1.5

Data obtained using the test methods described are not intended to be used to predict actual end-use performance. The data are not intended for design analysis or prediction of the endurance of materials at elevated temperatures.

1.6

This method is commonly known as the heat deflection temperature or heat distortion temperature (HDT) test, although there is no official document using this designation.