Vážení zákazníci, v letošním roce budeme expedovat poslední objednávky ve středu 18. 12. 2024.

Těšíme se s vámi na shledanou od pondělí 06. 01. 2025.

 

Cena s DPH / bez DPH
Hlavní stránka>BS ISO 9276-5:2005 Representation of results of particle size analysis Methods of calculation relating to particle size analyses using logarithmic normal probability distribution
Sponsored link
sklademVydáno: 2005-09-29
BS ISO 9276-5:2005 Representation of results of particle size analysis Methods of calculation relating to particle size analyses using logarithmic normal probability distribution

BS ISO 9276-5:2005

Representation of results of particle size analysis Methods of calculation relating to particle size analyses using logarithmic normal probability distribution

Formát
Dostupnost
Cena a měna
Anglicky Zabezpečené PDF
K okamžitému stažení
4898 Kč
Čtěte normu po dobu 1 hodiny. Více informací v kategorii E-READING
Čtení normy
na 1 hodinu
489.80 Kč
Čtěte normu po dobu 24 hodin. Více informací v kategorii E-READING
Čtení normy
na 24 hodin
1469.40 Kč
Anglicky Tisk
Skladem
4898 Kč
Označení normy:BS ISO 9276-5:2005
Počet stran:22
Vydáno:2005-09-29
ISBN:0 580 46573 X
Status:Standard
Popis

BS ISO 9276-5:2005


This standard BS ISO 9276-5:2005 Representation of results of particle size analysis is classified in these ICS categories:
  • 19.120 Particle size analysis. Sieving

The main objective of this part of ISO 9276 is to provide the background for the representation of a cumulative particle size distribution which follows a logarithmic normal probability distribution, as a means by which calculations performed using particle size distribution functions may be unequivocally checked. The design of logarithmic normal probability graph paper is explained, as well as the calculation of moments, median diameters, average diameters and volume-specific surface area. Logarithmic normal probability distributions are often suitable for the representation of cumulative particle size distributions of any dimensionality. Their particular advantage lies in the fact that cumulative distributions, such as number-, length-, area-, volume- or mass-distributions, are represented by parallel lines, all of whose locations may be determined from a knowledge of the location of any one.