Menu
0
Total price
0 €
PRICES include / exclude VAT
Homepage>BS EN 16091:2022 Liquid petroleum products. Middle distillates and fatty acid methyl ester (FAME) fuels and blend. Determination of oxidation stability by rapid small scale oxidation test (RSSOT)
sklademVydáno: 2023-01-06
BS EN 16091:2022 Liquid petroleum products. Middle distillates and fatty acid methyl ester (FAME) fuels and blend. Determination of oxidation stability by rapid small scale oxidation test (RSSOT)

BS EN 16091:2022

Liquid petroleum products. Middle distillates and fatty acid methyl ester (FAME) fuels and blend. Determination of oxidation stability by rapid small scale oxidation test (RSSOT)

Format
Availability
Price and currency
Anglicky Secure PDF
Immediate download
178.96 €
You can read the standard for 1 hour. More information in the category: E-reading
Reading the standard
for 1 hour
17.90 €
You can read the standard for 24 hours. More information in the category: E-reading
Reading the standard
for 24 hours
53.69 €
Anglicky Hardcopy
In stock
178.96 €
Označení normy:BS EN 16091:2022
Počet stran:18
Vydáno:2023-01-06
ISBN:978 0 539 17189 1
Status:Standard
DESCRIPTION

BS EN 16091:2022


This standard BS EN 16091:2022 Liquid petroleum products. Middle distillates and fatty acid methyl ester (FAME) fuels and blend. Determination of oxidation stability by rapid small scale oxidation test (RSSOT) is classified in these ICS categories:
  • 75.160.20 Liquid fuels
This document specifies a method for the determination of the oxidation stability of middle distillate fuels, fatty acid methyl ester (FAME) fuel and blends thereof, under accelerated conditions, by measuring the induction period to the specified breakpoint in a reaction vessel charged with the sample and oxygen at 140 °C. NOTE 1 For the purposes of this document, the term "% (V/V)" is used to represent the volume fraction (φ). NOTE 2 The induction period is used as an indication for the resistance of middle distillates, fatty acid methyl ester (FAME) fuels and blends thereof against oxidation. This correlation can vary markedly under different conditions with different FAMEs and diesel fuel blends. NOTE 3 The presence of ignition improvers can lead to lower oxidation stability results determined by this method. It has for instance been observed that the addition of 2-ethyl hexyl nitrate (2-EHN) can reduce the measured oxidation stability values. See [6] for details. NOTE 4 For further information on the precision data at a test temperature of 120 °C see Annex C.