Homepage>BS EN IEC 62271-106:2021 High-voltage switchgear and controlgear Alternating current contactors, contactor-based controllers and motor-starters
Sponsored link
sklademVydáno: 2021-06-11
BS EN IEC 62271-106:2021
High-voltage switchgear and controlgear Alternating current contactors, contactor-based controllers and motor-starters
Format
Availability
Price and currency
Anglicky Secure PDF
Immediate download
407.33 €
You can read the standard for 1 hour. More information in the category: E-reading
This standard BS EN IEC 62271-106:2021 High-voltage switchgear and controlgear is classified in these ICS categories:
29.130.10 High voltage switchgear and controlgear
This part of IEC 62271 applies to AC contactors and/or contactor-based controllers and motorstarters designed for indoor installation and operation at frequencies up to and including 60 Hz on systems having voltages above 1 kV and up to and including 24 kV. This document also includes additional requirements for outdoor installations where the equipment is housed in an additional protective enclosure. It is applicable only to three-pole devices for use in three-phase systems, and single-pole devices for use in single-phase systems. Two-pole contactors and starters for use in single-phase systems are subject to agreement between manufacturer and user. Contactors and/or starters dealt with in this document typically do not have adequate short-circuit interruption capability. In this context, this document gives requirements for: - starters associated with separate short-circuit protective devices; - controllers - contactors combined with short-circuit protective devices (SCPD). Contactors intended for closing and opening electric circuits and, if combined with suitable relays, for protecting these circuits against operating overloads are covered in this document. This document is also applicable to the operating devices of contactors and to their auxiliary equipment. Motor-starters intended to start and accelerate motors to normal speed, to ensure continuous operation of motors, to switch off the supply from the motor and to provide means for the protection of motors and associated circuits against operating overloads are dealt with. Motor-starter types included are: - direct-on-line starters; - reversing starters; - two-direction starters; - reduced kVA (voltage) starters; - auto-transformer starters; - rheostatic starters; - reactor starters. This document does not apply to: - circuit-breaker-based motor-starters; - single-pole operation of multi-pole contactors or starters; - two-step auto-transformer starters designed for continuous operation in the starting position; - unbalanced rheostatic rotor starters, i.e. where the resistances do not have the same value in all phases; - equipment designed not only for starting, but also for adjustment of speed; - liquid starters and those of the "liquid-vapour" type; - semiconductor contactors and starters making use of semiconductor contactors in the main circuit; - rheostatic stator starters; - contactors or starters designed for special applications. This document does not deal with components contained in contactors and contactor-based motor-starters, for which individual specifications exist. NOTE 1 Thermal electrical relays are covered by IEC 60255-149. NOTE 2 High-voltage current-limiting fuses are covered by IEC 60282-1 and IEC 60644. NOTE 3 Metal-enclosed switchgear and controlgear for rated voltages above 1 kV and up to and including 52 kV are covered by IEC 62271-200. NOTE 4 Disconnectors and earthing switches are covered by IEC 62271-102. NOTE 5 High-voltage switches above 1 kV and less than 52 kV are covered by IEC 62271-103. The object of this document is to state: a) the characteristics of contactors and starters and associated equipment; b) the conditions with which contactors or starters comply with reference to: 1) their operation and behaviour, 2) their dielectric properties, 3) the degrees of protection provided by their enclosures, where applicable, 4) their construction, 5) for controllers, interactions between the various components, for example SCPD co-ordination; c) the tests intended for confirming that these conditions have been met, and the methods to be adopted for these tests; d) the information to be given with the equipment or in the manufacturer's literature.