Menu
0
Total price
0 €
PRICES include / exclude VAT
Homepage>BS EN ISO 17142:2016 Fine ceramics (advanced ceramics, advanced technical ceramics). Mechanical properties of ceramic composites at high temperature in air at atmospheric pressure. Determination of fatigue properties at constant amplitude
sklademVydáno: 2016-05-31
BS EN ISO 17142:2016 Fine ceramics (advanced ceramics, advanced technical ceramics). Mechanical properties of ceramic composites at high temperature in air at atmospheric pressure. Determination of fatigue properties at constant amplitude

BS EN ISO 17142:2016

Fine ceramics (advanced ceramics, advanced technical ceramics). Mechanical properties of ceramic composites at high temperature in air at atmospheric pressure. Determination of fatigue properties at constant amplitude

Format
Availability
Price and currency
Anglicky Secure PDF
Immediate download
247.28 €
You can read the standard for 1 hour. More information in the category: E-reading
Reading the standard
for 1 hour
24.73 €
You can read the standard for 24 hours. More information in the category: E-reading
Reading the standard
for 24 hours
74.18 €
Anglicky Hardcopy
In stock
247.28 €
Označení normy:BS EN ISO 17142:2016
Počet stran:24
Vydáno:2016-05-31
ISBN:978 0 580 91163 7
Status:Standard
DESCRIPTION

BS EN ISO 17142:2016


This standard BS EN ISO 17142:2016 Fine ceramics (advanced ceramics, advanced technical ceramics). Mechanical properties of ceramic composites at high temperature in air at atmospheric pressure. Determination of fatigue properties at constant amplitude is classified in these ICS categories:
  • 81.060.30 Advanced ceramics

This International Standard specifies the conditions for the determination of properties at constant-amplitude of load or strain in uniaxial tension/tension or in uniaxial tension/compression cyclic fatigue of ceramic matrix composite materials (CMCs) with fibre reinforcement for temperature up to 1 700 °C in air at atmospheric pressure.

This International Standard applies to all ceramic matrix composites with fibre reinforcement, unidirectional (1D), bi-directional (2D), and tri-directional (xD, where 2 < x ≤ 3).

The purpose of this International Standard is to determine the behaviour of CMC when subjected to mechanical fatigue and oxidation simultaneously. Tests for the determination of fatigue properties at high temperature in inert atmospheres differ from those in oxidative atmospheres. Contrary to an inert atmosphere, damage in an oxidative atmosphere accumulates due to the influence of purely mechanical fatigue and to chemical effects of the material’s oxidation.