Menu
0
Total price
0 €
PRICES include / exclude VAT
Homepage>BS EN ISO 75-2:2013 Plastics. Determination of temperature of deflection under load Plastics and ebonite
Sponsored link
sklademVydáno: 2013-04-30
BS EN ISO 75-2:2013 Plastics. Determination of temperature of deflection under load Plastics and ebonite

BS EN ISO 75-2:2013

Plastics. Determination of temperature of deflection under load Plastics and ebonite

Format
Availability
Price and currency
Anglicky Secure PDF
Immediate download
183.79 €
You can read the standard for 1 hour. More information in the category: E-reading
Reading the standard
for 1 hour
18.38 €
You can read the standard for 24 hours. More information in the category: E-reading
Reading the standard
for 24 hours
55.14 €
Anglicky Hardcopy
In stock
183.79 €
Označení normy:BS EN ISO 75-2:2013
Počet stran:20
Vydáno:2013-04-30
ISBN:978 0 580 73628 5
Status:Standard
DESCRIPTION

BS EN ISO 75-2:2013


This standard BS EN ISO 75-2:2013 Plastics. Determination of temperature of deflection under load is classified in these ICS categories:
  • 83.080.10 Thermosetting materials
  • 83.060 Rubber

This part of ISO 75 specifies three methods, using different values of constant flexural stress, which can be used for the determination of the temperature of deflection under load of plastics (including filled plastics and fibre-reinforced plastics in which the fibre length, prior to processing, is up to 7,5 mm) and ebonite:

  • method A, using a flexural stress of 1,80 MPa;

  • method B, using a flexural stress of 0,45 MPa;

  • method C, using a flexural stress of 8,00 MPa.

The standard deflection, Δs, used to determine the temperature of deflection under load corresponds to a flexural-strain increase, Δεf, defined in this part of ISO 75. The initial flexural strain due to the loading of the specimen at room temperature is neither specified nor measured in this part of ISO 75. The ratio of this flexural-strain increase to the initial flexural strain depends on the modulus of elasticity, at room temperature, of the material under test. This method is, therefore, only suitable for comparing the temperatures of deflection of materials with similar room-temperature elastic properties.

NOTE 1 The methods give better reproducibility with amorphous plastics than with semi-crystalline ones. With some materials, it can be necessary to anneal the test specimens to obtain reliable results. Annealing procedures, if used, generally result in an increase in the temperature of deflection under load (see 6.6).

NOTE 2 For additional information, see ISO 75-1:2013, Clause 1.