Vážení zákazníci, v letošním roce budeme expedovat poslední objednávky ve středu 18. 12. 2024.

Těšíme se s vámi na shledanou od pondělí 06. 01. 2025.

 

Menu
0
Total price
0 €
PRICES include / exclude VAT
Homepage>BS ISO 6721-4:2019 Plastics. Determination of dynamic mechanical properties Tensile vibration. Non-resonance method
Sponsored link
sklademVydáno: 2019-05-08
BS ISO 6721-4:2019 Plastics. Determination of dynamic mechanical properties Tensile vibration. Non-resonance method

BS ISO 6721-4:2019

Plastics. Determination of dynamic mechanical properties Tensile vibration. Non-resonance method

Format
Availability
Price and currency
Anglicky Secure PDF
Immediate download
194.71 €
You can read the standard for 1 hour. More information in the category: E-reading
Reading the standard
for 1 hour
19.47 €
You can read the standard for 24 hours. More information in the category: E-reading
Reading the standard
for 24 hours
58.41 €
Anglicky Hardcopy
In stock
194.71 €
Označení normy:BS ISO 6721-4:2019
Počet stran:16
Vydáno:2019-05-08
ISBN:978 0 580 97458 8
Status:Standard
DESCRIPTION

BS ISO 6721-4:2019


This standard BS ISO 6721-4:2019 Plastics. Determination of dynamic mechanical properties is classified in these ICS categories:
  • 83.080.01 Plastics in general

This document describes a forced, non-resonance method for determining the components of the tensile complex modulus E* of polymers at frequencies typically in the range 0,01 Hz to 100 Hz.

NOTE

Higher frequency measurements can be made, but significant errors in the dynamic properties measured are likely to result (see  10.2.2 and 10.2.3).

The method is suitable for measuring dynamic storage moduli in the range 0,01 GPa to 5 GPa. Although materials with moduli outside this range can be studied, alternative modes of deformation are intended to be used for higher accuracy [i.e. a shear mode for G? < 0,01 GPa (see  ISO 6721-6) and a flexural mode for E? > 5 GPa (see  ISO 6721-3 or ISO 6721-5)].

This method is particularly suited to the measurement of loss factors and can therefore be conveniently used to study the variation of dynamic properties with temperature and frequency through most of the glass-rubber relaxation region (see  ISO 6721-1). The availability of data determined over wide ranges of both frequency and temperature enables master plots to be derived, using frequency-temperature shift procedures, which display dynamic properties over an extended frequency range at different temperatures.