Menu
0
Total price
0 €
PRICES include / exclude VAT
Homepage>IEC TS 62607-6-10:2021 - Nanomanufacturing - Key control characteristics - Part 6-10: Graphene-based material - Sheet resistance: Terahertz time-domain spectroscopy
Sponsored link
sklademVydáno: 2021-10-14
IEC TS 62607-6-10:2021 - Nanomanufacturing - Key control characteristics - Part 6-10: Graphene-based material - Sheet resistance: Terahertz time-domain spectroscopy

IEC TS 62607-6-10:2021

Nanomanufacturing - Key control characteristics - Part 6-10: Graphene-based material - Sheet resistance: Terahertz time-domain spectroscopy

Format
Availability
Price and currency
Anglicky Hardcopy
skladem
305.64 €
Anglicky PDF
Immediate download
305.64 €
Označení normy:IEC TS 62607-6-10:2021
Vydáno:2021-10-14
Jazyk:Anglicky
DESCRIPTION

IEC TS 62607-6-10:2021

IEC TS 62607-6-10:2021(E) establishes a standardized method to determine the electrical key control characteristic – sheet resistance (Rs) for films of graphene-based materials by – terahertz time domain spectroscopy (THz-TDS). In this technique, a THz pulse is sent to the graphene-based material. The transmitted or reflected THz waveform is measured in the time domain and transformed to the frequency domain by the fast Fourier transform (FFT). Finally, the spectrum is fitted to the Drude model (or another comparable model) to obtain the sheet resistance. • This non-contact inspection method is non-destructive, fast and robust for the mapping of large areas of graphene films, with no upper sample size limit. • The method is applicable for statistical process control, comparison of graphene films produced by different vendors, or to obtain information about imperfections on the microscale such as grain boundaries and defects, etc. • The method is applicable for graphene grown by chemical vapour deposition (CVD) or other methods on or transferred to dielectric substrates, including but not limited to quartz, silica (SiO2), silicon (Si), sapphire, silicon carbide (SiC) and polymers. • The minimum spatial resolution is in the order of 300 µm (at 1 THz) given by the diffraction limited spot size of the THz pulse.